Beginner's Python

Cheat Sheet

Variables and Strings

Variab are used to store values. A string Is a series of
characters, surrounded by single or doubie quates.

Hello world
print(“Hello world!"™)
Hello world with a variable

msg = “"Hello world!"
print(msg)

Concatenation (combining strings)

first_name = ‘albert’
last_name = 'einstein’
full_name = first_name +
print(full_name)

+ last_name

Lists

A list stores a series of items in a particular order. You
access items Lsing an index, or within a loop

Make a list
bikes = ['trek', 'redline’, 'giant’']
Get the first item in a list
first_bike = bikes[@]
Get the last item In a list
last_bike = bikes[-1]
Looping through a list

for bike in bikes:
print(bike)

Adding items to a list

bikes = []
bikes.append('trek')
bikes.append('redline')
bikes.append('giant')

Making numerical lists

squares = []
for x in range(1, 11):
squares.append(x**2)

Lists (cont.)

List comprehensions
squares = [x**2 for x in range(1, 11)]
Slicing a list

finishers = ['sam‘, 'bob', ‘ada', 'bea’'])
first_two = finishers[:2]

Copying a list
copy_of_bikes = bikes[:]

Tuples

Tuples are similar to lists, bul the items in a tuple can't be
modified.

Making a tuple
dimensions = (1920, 1080)

If statements

If statements are used o test for particular conditions and
respond appropriately

Conditional tests

equals X == 42

not equal X 1= 42

greater than X > 42
or equal to X >= 42

less than X < 42
or equal to X <= 42

Conditional test with lists

‘trek' in bikes
‘surly’ not in bikes

Assigning boolean values

game_active = True
can_edit » False

A simple if test

if age >= 18:
print("“You can vote!")

If-elif-else statements

if age < 4:
ticket_price

elif age < 18:
ticket_price

else:
ticket_price = 15

10

Dictionaries

Dictionaries store connections between pieces of
information. Each item in a dictionary is a key-value pair

A simple dictionary

alien = {'color': 'green’', 'points': 5}
Accessing a value

print("The alien's color is " + alien['color'])
Adding a new key-value pair

alien['x_position'] =~ @
Looping through all key-value pairs

fav_numbers = {'eric': 17, 'ever': 4}
for name, number in fav_numbers.items():
print(name + ' loves ' 4 str(number))

Looping through all keys

fav_numbers = {'eric': 17, 'ever': 4}
for name in fav_numbers.keys():
print(name + ' loves a number')

Looping through all the values

fav_numbers = {'eric': 17, 'ever': 4}
for number in fav_numbers.values():
print(str{number) + ' is a favorite')

User input

Your programs can prompt the user for input. All input is
stored as a string

Prompting for a value

name = input("What's your name? ")
print(“"Hello, " + name + 1)

Prompting for numerical input

age = input(“How old are you? ")
age = int(age)

pi = input(“what's the value of pi? *)
pi = float(pi)

PYTHON
CRASH COURSE

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

While loops

A while loop repeats a block of code as long as a certain
condition is true

A simple while loop

current_value = 1

while current_value <= 5:
print{current_value)
current_value += 1

Letting the user choose when to quit

msSg =
while msg != 'quit':
msg = input("What's your message? ")
print{msg)

Functions
Functions are named blocks of code, designed 1o do one

d to & function is calk

specific job. Infol
argument, and information recelved by a function is called a
parameter.

A simple function

def greet_user():
“"“Display a simple greeting.
print(“Hello!l"™)

greet_user()

Passing an argument

def greet_user(username):
“““Display a personalized greeting.
print(“"Hello, ™ + username + "!1")

greet_user('jesse’)
Default values for parameters

def make_pizza(topping="bacon'):
“""Make a single-topping pizza.
print(“"Have a " + topping + " pizzal")

make_pizza()
make_pizza('pepperoni’)

Returning a value

def add_numbers(x, y):
“""Add two numbers and return the sum.
return X + y

sum = add_numbers(3, 5)
print(sum)

Classes

A class defines the behavior of an object and the kind of
information an object can store. The information in a class

is stored In attribules, and functions that belong to a class
are called methods. A child class inherits the attribu
methods from ifs parent class

Creating a dog class

class Dog():
"“""Represent a dog.

def __init__ (self, name):
“""Initialize dog object."""
self.name = name

def sit(self):
"""Simulate sitting."""
print(self.name + " is sitting.”)

my_dog = Dog('Peso')

print(my_dog.name + " is a great dog!")
my_dog.sit()

Inheritance

class SARDog(Dog):
"""Represent a search dog."""

def __init__(self, name):
"""Initialize the sardog."""
super().__init__(name)

def search(self):
"""Simulate searching.
print(self.name + " is searching.”)

naun

my_dog = SARDog('Willie')

print(my_dog.name + " is a search dog.")
my_dog.sit()
my_dog.search()

Infinite Skills

If you had infinite programming skills, what would you
build?

As you're learning to program, it's helpful to think
about the real-world projects you'd like to create. It's
a good habit to keep an "ideas" notebook that you
can refer to whenever you want to start a new project.
If you haven't done so already, take a few minutes
and describe three projects you'd like to create,

Working with files

Your programs can read from files and write 1o files. Files

e ('r') by default, but can alsa be
‘W) and append mode ('a’}

are opene
opened in wr

Reading a file and storing its lines

filename = 'siddhartha.txt’
with open(filename) as file_object:
lines = file object.readlines()

for line in lines:
print(line)

Writing to a file

filename = 'journal,txt'
with open(filename, 'w') as file_object:
file_object.write("I love programming.")

Appending to a file

filename = 'journal,txt'
with open(filename, 'a') as file_object:
file_object,write("\nI love making games.")

Exceptions
Excaptions help you respond appro
are likely to occur. You place code th

iately to errors that

might cause an
error in the try block. Code that should run in response o
an error goes in the except block. Code that shouwld run only
if the try block was successful goes in the else block

Catching an exception

prompt = "How many tickets do you need? "
num_tickets « input(prompt)

try:

num_tickets = int(num_tickets)
except ValueError:

print(“"Please try again.")
else:

print("Your tickets are printing.")

Zen of Python

Simple is better than compiex

If you have a choice between a simple and a complex
solution, and both work, use the simple solution. Your
code will be easier to maintain, and it will be easier
for you and others to build on that code later on.

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet - Lists

What are lists?

A list stores a series of items in a particular order.
Lists allow you to store sets of information in one
place, whether you have just a few items or millions
of items. Lists are one of Python's most powerful
features readily accessible to new programmers, and
they tie together many important concepts in
programming.

Defining a list

Use square brackels to deline a lisl, and use commas o
separate individual lems in the list, Use plural names for
lists, 0 make your code easier lo read.

Making a list
users = ['val’', 'bob', 'mia’, 'ron', 'ned']

Accessing elements

Individual elements in a list are accessed according to thew
position, called the index. The index of the first element is
0, the index of the second element is 1, and so forth
Negative indices refer to items at the end of the list. To get
a particular element, write the name of the list and then the
index of the element in square brackels

Getting the first element
first_user = users[0]

Getting the second element
second_user = users[1]

Getting the last element

newest_user = users[-1]

Modifying individual items

Once you've defined a list, you can change individual

elements in the isl. You do this by refernng to the index of
the item you want to modify.

Changing an element

users[@] = ‘valerie’
users[-2] = 'ronald’

Adding elements

You can add elements to the end of a list, or you can insert
them wheraver you like in a list

Adding an element to the end of the list
users.append('amy')
Starting with an empty list

users = []

users.append('val’)
users.append('bob')
users.append(‘'mia’)

Inserting elements at a particular position

users.insert(@, 'joe')
users.insert(3, 'bea’)

Removing elements
You can remove elements by their position in & list, or by

the value of the item. If you remove an ilem by its value,
Python removes only the first ifem that has that vailue

Deleting an element by its position
del users[-1)

Removing an item by its value

users.remove('mia’)

Popping elements

If you want to work with an element that you're removing
from the list, you can “pop® the elament. If you think of the

list as a stack of items, pop() takes an jtem olf the top of the

stack, By default pop{) returns the 1ast element in the st
bul you can also pop elements from any position in the list

Pop the last item from a list

most_recent_user = users.pop()
print(most_recent_user)

Pop the first item in a list

first_user = users.pop(@)
print(first_user)

List length

The len() function returns the number of items in a list
Find the length of a list

num_users = len(users)

print{“"We have " + str(num_users) + " users.,")

Sorting a list

The sort() method changes the order of a Nst permanently
The sorted() function returns a copy of the list. leaving the

original list unchanged. You can sort the items In a kst in
alphabetical order, or reverse alphabetical order. You can
also reverse the onginal order of the list, Keep in mind that
lowercase and uppercase letters may affect the sort order.

Sorting a list permanently
users.sort()

Sorting a list permanently in reverse alphabetical
order

users.sort(reverse=True)

Sorting a list temporarily

print(sorted(users))
print(sorted(users, reverse=True))

Reversing the order of a list

users.reverse()

Looping through a list

Lists can contain millions of lems, so Python provides an
efficient way 1o loop through all the items in a hist. When
you set up a loop, Python pulls each ifem from the list ane
at a ime and stores it in a temporary vanable, which you
provide a name for, This name should be the singular
version of the st name

The indented block of code makes up the bady of the
loop, where you can work with each individual item. Any
lines that are not indented run after the loop is completed

Printing all items in a list

for user in users:
print(user)

Printing a message for each item, and a separate
message afterwards

for user in users:
print("Welcome,

+ user + "I")

print("Welcome, we're glad to see you alll")

PYTHON
A D

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

The range() function
You can use the range() fur
numbers efficiently, The rang

ion to work with a se

) function starts at 0 by
default, and stops one number below the number passed 1o
it. You can use the list() function to efficiently generate a
large list of numbers.

Printing the numbers 0 to 1000

for number in range(1891):
print(number)

Printing the numbers 1 to 1000

for number in range(1, 1091):
print(number)

Making a list of numbers from 1 to a million
numbers = list(range(l, 1008001))

Simple statistics

There are a number of simple statistics you can run on a list
containing numerical data.

Finding the minimum value in a list

ages = [93, 99, 66, 17, 85, 1, 35, B2, 2, 77]
youngest = min(ages)

Finding the maximum value

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
oldest = max(ages)

Finding the sum of all values

ages = [93, 99, 66, 17, 85, 1, 35, 82, 2, 77]
total years = sum(ages)

Slicing a list
You can work with any set of elements from a list, A portion
of a list is called a slice. To siice a list start with the index of

the first item you want, then add a colon and the index after
the last item you want. Leave off the first index to start at
the beginning of the list, and leave olf the last index (o shce
through the end of the list,

Getting the first three items
finishers = ['kai', ‘abe’, 'ada’', 'gus’,
first_three = finishers[:3]

Getting the middie three items
middle_three = finishers[1:4)

Getting the last three items
last_three = finishers[-3:]

‘zoe']

Copying a list

To copy a list make a stice that staris at the first item and

ends at the fast item. If you Iry to copy a list without using
this approach, whatever you do to the copied list will affect
the original list as well

Making a copy of a list

finishers = ['kail', 'abe', 'ada', 'gus', 'zoe']
copy_of_finishers = finishers[:]

List comprehensions

You can use a loop (o generate a st based on a range of
numbers or on another list, This is a common operation, so
Python offers a more efficent way to do it. List
comprehensions may look complicated at first; if so, use the

for loop approach until you're ready to start using
comprahensions

To wnite a comprehension, define an expression for the
values you want 1o store in the list, Then write a for loop to
generate input values needed to make the list

Using a loop to generate a list of square numbers

squares = []

for x in range(1, 11):
square = x**2
squares.append(square)

Using a comprehension 1o generate a list of square
numbers

squares = [x**2 for x in range(1, 11)]
Using a loop to convert a list of names to upper case

names = ['kail', 'abe', ‘'ada', 'gus', 'zoe']

upper_names = []

for name in names:
upper_names.append(name.upper())

Using a comprehension to convert a list of names to
upper case

names = ['kai', ‘abe’,

ada’,

gus', 'zoe']

upper_names = [name.upper() for name in names)

Styling your code

Readabifity counts

* Use four spaces per indentation level.

» Keep your lines to 79 characters or fewer.

* Use single blank lines to group parts of your
program visually.

Tuples

A luple 1s like a list, exceplt you can'l change the values in a
tuple once It's defined. Tuples are good for storing

information that shouldn't be changed throughout the life of
a program. Tuples are designated by parentheses instead
of square brackets. (You can overwrite an entire tuple, but
you can't change the individual elements in a tuple.)

Defining a tuple
dimensions = (8@, 60@)
Looping through a tuple

for dimension in dimensions:
print(dimension)

Overwriting a tuple

dimensions = (8080, 608)
print(dimensions)

dimensions = (128, 998)

Visualizing your code
When you're lirst leaming about data structures such as
lists, it helps to visualize how Python is working with the

information in your program. pythontutar.com is a great ool
for sesing how Python keeps frack of the information in-a
list. Try running the following code on pythontutor.com, and
then run your own code

Build a list and print the items in the list

dogs = []
dogs.append(‘'willie')
dogs.append('hootz')
dogs.append('peso’)
dogs.append('goblin’)

for dog in dogs:
print(“"Hello " + dog + "1")
print("I love these dogs!")

print(“\nThese were my first two dogs:")
old_dogs = dogs[:2]
for old_dog in old_dogs:

print(old_dog)

del dogs[@]
dogs.remove(‘peso’)
print(dogs)

More cheat sheets available at
ehmatthes.qgithub.lo/pcc/

Beginner's Python

Cheat Sheet —
Dictionaries

What are dictionaries?

Python's dictionaries allow you to connect pieces of
related information. Each piece of information in a
dictionary is stored as a key-value pair. When you
provide a key, Python returns the value associated
with that key. You can loop through all the key-value
pairs, all the keys, or all the values.

Defining a dictionary

Use curly braces to define a dictionary. Use colons o
connect keys and values, and use commas lo separate
individual key-value pairs

Making a dictionary

alien_© = {'color’: ‘green', 'points’': 5}

Accessing values

To access the value ass d with-an individual key give
tha name of the dictionary and then place the kay in a st of
square brackets. If the key you're asking for is not in the

dictionary, an ecror will oceur.,

You can also use the gel() method, which returns Novie
instead of an error if the key doesn't exist. You can also
specify a defaull value to use if the key is not in the
dictionary.

Getting the value associated with a key
alien_® = {‘'color’: ‘'green’, ‘points’: 5}

print(alien_8&[‘color'])

print(alien_@[‘points’])
Getting the value with get()

alien_© = {'color’: 'green'}

alien_color = alien_@.get{'color')
alien_points = alien_0.get('points’, @)

print(alien_color)
print(alien_points)

Adding new key-value pairs
You can store as many key-value pairs as you want in a
dictionary, until your computer runs out of memory. To add

a new key-value pair 1o an existing dictionary give the name

of the dictionary and the new key in square brackels, and
set it equal to the new value

This also allows you to start with an empty dictionary and
add key-value pairs as they become relevant

Adding a key-value pair
alien © = {'color’': 'green', 'points': 5}

alien O['x'] = @
alien B['y'] = 25
alien_O['speed'] = 1.5

Adding to an empty dictionary

alien_ @ = {}
alien_@[‘color'] = ‘green’
alien_Of'points'] = 5

Modifying values

You can maodify the value associated with any key ina
dictionary. To do so¢ give the name of the dictionary and
enclose the key in square brackals, then provige the new
value for that key

Modifying values in a dictionary

alien_© = {'color': 'green', 'points': S5}
print(alien_0)

Change the alien's color and point value.
alien_8['‘color'] = ‘yellow'

alien_O['points'] = 18

print(alien_8)

Removing key-value pairs

You can remo ny key-value pair you want from a
dictionary. To do so use the del keyword and the dictionary
name, followed by the key in square brackets. This will
delete the key and its associated value

Deleting a key-value pair

alien_©® = {'color’: 'green', 'points': 5}
print(alien_8)

del alien_8['points’]
print(alien_8)

Visualizing dictionaries

Try running some of these exampies on pythontutor.com

Looping through a dictionary

You can joop through a dictionary In three ways: you can
loop through all the key-value pairs, all the keys, or all the
values

A dictionary only tracks the connections belween keys
and values; it doesn't track the order of items in the
dictionary. If you want to process the information in order,
you can'sort the keys in your loop.

Looping through all key-value pairs

Store people's favorite languages.
fav_languages = {

‘Jen': 'python’,

'sarah': 'c’,

'edward': 'ruby',

‘phil': ‘python’,

Show each person's favorite language.
for name, language in fav_languages.items():
print(name + ": " + language)

Looping through all the keys

Show everyone who's taken the survey.
for name in fav_languages.keys():
print(name)

Looping through all the values

Show all the languages that have been chosen.
for language in fav_languages.values():
print(language)

Looping through all the keys in order

Show each person's favorite language,

in order by the person's name.

for name in sorted(fav_languages.keys()):
print(name + ": " + language)

Dictionary length

You can find the number ol key-value pars in a gichonary
Finding a dictionary's length

num_responses = len(fav_languages)

PYTHON
CHASH Sovnas

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Nesting — A list of dictionaries

It's sometimes useful to store a set of dictionanes in a list
this is called nesting

Storing dictionaries in a list

Start with an empty list.
users = []

Make a new user, and add them to the list.
new_user = {

*last’: ‘fermi',

"first®': ‘enrico’,

‘username’: ‘efermi’,

users.append(new_user)

Make another new user, and add them as well.
new_user = {

*last’: ‘curie’,

"first': ‘marie’,

‘username’: ‘mcurie’,

}

users.append(new_user)

Show all information about each user.
for user_dict in users:
for k, v in user_dict.items():
print(k + ": " + v)
print(*\n")

You can also define a list of dictionaries directly,
without using append():

Define a list of users, where each user
1is represented by a dictionary.
users = [
{
'last': 'fermi’,
‘first': ‘enrico’,
‘username’: ‘efermi’,

b

{
"last’': ‘curie’,
‘first': ‘marie’,
‘username’: ‘mcurie’,

b

]

Show all information about each user.
for user_dict in users:
for k, v in user_dict.items():
print(k + “: " + v)
print{“\n")

Nesting — Lists in a dictionary
Storing a list inside a dictionary alows you to as
more than one vailue with each key.

Storing lists in a dictionary

Store multiple languages for each person.
fav_languages = {

‘Jen': ['python’', ‘ruby'],

‘sarah': ['c'],

‘edward': ['ruby', 'go'l,

‘phil': ['python’', ‘haskell’],

Show all responses for each person.
for name, langs in fav_languages.items():
print(name + ": ")
for lang in langs:
print("- " + lang)

Nesting — A dictionary of dictionaries

You can store a dictionary inside another dictionary. In this
value associated with a key is itsell a dictionary

Storing dictionaries in a dictionary

users = {

‘aeinstein': {
: ‘albert',

'last': 'einstein’',
'location': 'princeton’,
) &

‘meurie’: {
'first': ‘'marie’,
‘last': ‘curie’,
'location': 'paris’',

b

for username, user_dict in users.items():
print("\nUserpame: " 4+ username)
full_name = user_dict['first'] +
full_name +« user_dict['last']
location = user_dict['location’']

" o

print(“\tFull name: " + full name.title())
print("\tLocation: " + location.title())

Levels of nestin

Nesting is extrem seft) Siluations. However,
be ¢ re of . 3 ex. Il you're

nestir
are probably simpler w.
13SSES

Using an OrderedDict

Standard Python dictionanes don't keep track of the order
in which keys and val are adaded, they only preserve the
association en each key and its value. If you war

preserve the order in which keys and values are added, use
an OrderadDict

Preserving the order of keys and values
from collections import OrderedDict

Store each person's languages, keeping
track of who respoded first.
fav_languages = OrderedDict()

fav_languages['jen'] =
fav_languages|‘sarah’]
fav_languages| ‘edward’]
fav_languages[‘'phil’] =

['python’, ‘ruby’]
= [‘c’]

= ['ruby’, 'go’]
[*python', ‘'haskell’]

Display the results, in the same order they
were entered.
for name, langs in fav_languages.items():
print(name + ":")
for lang in langs:
print(®- " + lang)

Generating a million dictionaries

You can use a loop to generate a large number of

ies efficlently, if all the di out with

similar dala.
A million aliens

aliens = []

Make a million green aliens, worth 5 points
each. Have them all start in one row.
for alien_num in range({12960€@):
new_alien = ()}
new_alien['color'] = 'green’
new_alien[‘points’] = 5
new_alien[‘'x'] = 28 * alien_num
new_alien['y'] = @
aliens.append(new_alien)

Prove the list contains a million aliens.
num_aliens = len(aliens)

print{“Number of aliens created:")
print(num_aliens)

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python
Cheat Sheet —

If Statements
and While Loops

What are if statements? What are while loops?

If statements allow you to examine the current state
of a program and respond appropriately to that state.
You can write a simple if statement that checks one
condition, or you can create a complex series of if
statements that idenitfy the exact conditions you're
looking for,

While loops run as long as certain conditions remain
true. You can use while loops to let your programs
run as long as your users want them to.

Conditional Tests
A conditional test is an expression that can be evaluated as

True or Falee. Python uses the values True and False 1o
decide whether the code In an If statement should be
executed

Checking for equality

A single equal sign assigns a valve 1o a variable. A double equal
sign (==) checks whether two values are equal.

>»» car = ‘bmw’
>>> car == 'bmw'

True
>>> car = 'audi’
>>> car == 'bmw'
False

Ignoring case when making a comparison

>»> car = 'Audi’
>>> car.lower() == 'audi’
True

Checking for inequality

>»> topping = 'mushrooms’
>>> topping != ‘'anchovies'
True

Numerical comparisons

Testing numerical values is similar 1o testing string values
Testing equality and inequality

>>> age = 18
>>> age == 18

True
>>> age |= 18
False
Comparison operators

>>> age = 19
>>> age < 21
True

>>> age <= 21
True

>»>> age > 21
False

>>> age >= 21
False

Checking multiple conditions
You can check multiple conditions al the same time. The

and operator returns True if all the conditions listed are
True. The or gperator returns True if any condition is True

Using and to check multiple conditions

>>> age_@ = 22

>>> age_ 1 = 18

>>> age_@ >= 21 and age_1 >= 21
False

>>> age_1 = 23

>>> age_0 >= 21 and age_1 >= 21
True

Using or to check multiple conditions

>>> age_0 = 22

>>> age_1 = 18

>>> age_0 >= 21 or age_1 >= 21
True

>>> age 0 = 18

>>> age_@ >= 21 or age_1 >= 21
False

Boolean values
A boolean value is either True or False. Vanables with

boolean values are often used to keep track of certain
conditions within a program

Simple boolean values

game_active = True
can_edit = False

If statements
Several kinds of if statements exist. Your choice of which to

use depends on the number of conditions you need (o test

You can have nany elll blocks as you need, and the
else block Is always optional

Simple if statement
age = 19

if age >= 18:
print("You're old enough to vote!")

If-else statements
age = 17
if age >= 18:
print(“You're old encugh to vote!")

else:
print(“You can't vote yet.")

The if-elif-else chain
age = 12
if age < 4:
price = @
elif age < 18:
price = 5
else:
price = 10

print(“"Your cost is $" + str(price) + ".")

Conditional tests with lists
You can easily test whethar a certain value Is in a Kst. You

can also test whether a list is empty before trying to loop
through the list

Testing if a value is in a list

>>> players = ['al', ‘bea’, ‘cyn’, ‘dale’]
>>> 'al' in players

True

>>»> ‘eric' in players

False

Python Crash Course |«

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Conditional tests with lists (cont.)

Testing if a value is not in a list

banned_users = [‘ann', 'chad’, 'dee’]
user = ‘erin’

if user not in banned_users:
print(“You can play!")

Checking if a list is empty
players = []

if players:
for player in players:
print("Player: " + player.title())
else:
print(“We have no players yet!")

Accepting input

You can allow your users to enter inpul using the input()
statement. In Python 3, all input is stored as a siring

Simple input

name = input(“"What's your name? ")
print("Hello, " + name + ".")

Accepting numerical input

age = input(“How old are you? ")
age = int(age)

if age >= 18:
print(“\nYou can vote!")
else:
print("\nYou can't vote yet.")

Accepting input in Python 2.7

Use raw_input() in Python 2,7. This function interprets all input as a
string, just as input() does in Python 3.

name = raw_input(“"wWhat's your name? ")
print("Hello, " + name + ".")

While loops

A while loop repeals a block of code as long as a condition
is True

Counting to 5
current_number = 1
while current_number <= 5:

print{current_number)
current_number += 1

Letting the user choose when to quit

prompt = “\nTell me something, and I'11 "
prompt += "repeat it back to you."
prompt += "\nEnter 'quit' to end the program.

message =
while message != 'quit':
message = input(prompt)

if message !|= 'quit':
print(message)

Using a flag

prompt = "\nTell me something, and I'11 “
prompt += “repeat it back to you."
prompt += "\nEnter 'quit' to end the program. "
active = True
while active:

message = input(prompt)

if message == 'quit':
active = False
else:
print(message)

Using break to exit a loop

prompt = "\nWhat cities have you visited?"
prompt += "\nEnter 'quit' when you're done. "
while True:

city = input(prompt)

if city == 'quit':
break
else:
print("I've been to " + city + "I")

Accepting input with Sublime Text

Sublime Text doesn't run programs that prompt the user for

inpul. You can use Sublime Tex! to write programs that
prompt for inpul, but you'll need o run these programs rom
& terminal

Breaking out of loops
You can use the break statement and the conlinue
statement with any of Python's lagps. For example you can

use break 1o quit & lor loop that's working through a list or a

dictionary. Y inue (o skip over canaimn items
when looping through a list or dictionary as well

While loops (cont.) While loops (cont.)

Using continue in a loop

banned_users = ['eve', 'fred', 'gary’', 'helen']

prompt = "\nAdd a player to your team."
prompt += "\nEnter ‘'quit' when you're done. "
players = []
while True:
player = input(prompt)
if player == 'quit':
break
elif player in banned_users:
print(player + " is banned!")
continue
else:
players.append(player)

print{"\nYour team:")
for player in players:
print(player)

Avoiding infinite loops

Every while loop needs a way to stop running so it won't

ntinue to run fo If there's no way for the condition lo
become False, the joop will never stop running

An infinite loop

while True:
name = input("“\nWho are you? ")
print("Nice to meet you, " + name + "|")

Removing all instances of a value from a list
The remove() method removes a specific value from a list,
e of the value you

but it only removes the first ir
provide. You can use a while loop o ramove all instances
of a particular value

Removing all cats from a list of pets

pets = ['dog', 'cat', 'dog’, 'fish’', 'cat’',
‘rabbit’, ‘cat']

print(pets)

while ‘cat' in pets:
pets.remove('cat’)

print(pets)

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python
Cheat Sheet —
Functions

What are functio

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need to
accomplish the same task. Functions can take in the
information they need, and return the information they
generate. Using functions effectively makes your
programs easier to write, read, test, and fix.

Defining a function
The first line of a function Is its definition, marked by the
keyword defl. The name of the function is followad by a set
of parentheses and a n. A docstring, in triple quoles,
describes what the function does. The body of a function is
indented one level

To call a function, give the name of the function folfowed
by a set of parentheses

Making a function

def greet_user():
""“Display a simple greeting.
print("Hello!")

greet_user()

Passing information to a function
Information that's passed 1o a function is called an
argument; information that's received by a function is cafled

3 paramefer. Arguments are included in parentheses after
the function’s name, and parameters are listed in
parentheses in the function's definition,

Passing a single argument

def greet_user(username):
"“"pisplay a simple greeting.
print(“Hello,

" 4 username + "!7)
greet_user('jesse’)
greet_user('diana’)
greet_user('brandon’)

Positional and keyword arguments
The two main kinds of argumenis are positional and
keyword arguments. When you use position.
Pythan matches the first argument in the |

umems
stion cafl with
the hirst parameter in the function definition, and so forth
With keyword arguments, you specify which parameter
each argument should be assigned to in the function call
When you use keyword arguments, the order of the
arguments doesn’t matter

Using positional arguments

def describe pet(animal, name):
"""pisplay information about a pet.
print("\nI have a " + animal + ".")
print("Its name is " + name + ".")

describe_pet('hamster’', ‘harry')
describe_pet('dog', 'willie')

Using keyword arguments

def describe_pet(animal, name):
"“"Display information about a pet."""
print("\nl have a2 " + animal + ".")
print("Its name is " + name + “.")

describe_pet(animal='hamster', name='harry')
describe_pet(names'willie', animalw='dog')

Default values
You can provide a default value for a parameter. When
function calls omit this argument the default value will be

used. Paramelers with defaull values must be listed alter
parameters without defaull values in the function’s definition
50 positional arguments can shill work correctly

Using a default value

def describe_pet(name, animal=‘dog'):
"““pisplay information about a pet."""
print("\nI have a " + animal + ".")

print("Its name is " + name + ".")

describe_pet('harry', 'hamster')
describe_pet(‘willie')

Using None to make an argument optional

def describe_pet(animal, name=None):
“““pisplay information about a pet.™""
print("\nI have a " + animal + ".")
if name:
print("Its name is " « name + ".")

describe_pet('hamster', ‘harry')
describe_pet(‘snake’)

Return values
A function can return a value or 2 sel of values. When a

function ratums a value, the calling line must provide a
variabie in which to store the return value. A function stops
running when It reaches a return statement

Returning a single value

def get_full_name(first, last):
"""Return a neatly formatted full name.
full name = first + ' ' 4 last
return full_name.title()

musician = get_full_name('jimi', ‘'hendrix')
print(musician)

Returning a dictionary

def build _person(first, last):
""“Return a dictionary of information
about a person.
person = {'first': first, 'last': last}
return person

musician = bulld person('jimi’', ‘hendrix')
print(musician)

Returning a dictionary with optional values

def build_person(first, last, age=None):
“""“Return a dictionary of information
about a person.
person = {'first': first, 'last': last}
if age:
personf‘age’'] = age
return person

musician = build_person('jimi‘', ‘hendrix’', 27)
print(musician)

musician = build_person('janis', ‘joplin')
print(musician)

Visualizing functions

T.'y unning some of these examples on pythontulor.com

PYTHON
CRASH COURSE

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Passing a list to a function

You can pass a fist as an argument to a function, and the
function can work with the v

es in the list. Any changes
he list will affect the onginal lisl. You
tion from modifying a list by passing a
S an argument

the fun
can prevent a i
copy of the list

Passing a list as an argument

def greet_users(names):
“""print a simple greeting to everyone, """
for name in names:
msg = "Hello, " + name + "!"
print(msg)

usernames = [“hannah‘,
greet_users(usernames)

Allowing a function to modify a list
The following example sends a list of modefs fo a function for
printing. The onginal list is emptied. and the second st is filled.

def print_models(unprinted, printed):
"“*3d print a set of models.""™™
while unprinted:
current_model = unprinted.pop()
print(“Printing " + current_model)
printed.append({current_model)

'ty', ‘margot‘]

Store some unprinted designs,
and print each of them.
unprinted = ['phone case’,
printed = []

print_meodels(unprinted, printed)

‘pendant’, ‘ring']

print(“\nUnprinted:", unprinted)
print("Printed:", printed)

Preventing a function from modifying a list
The following example Is the same as the previous one, except the
original list is unchanged after calling print_modeis().
def print_models{unprinted, printed):
"""3d print a set of models."""
while unprinted:
current_model = unprinted.pop()
print("Printing " # current_model)
printed.append(current_model)

Store some unprinted designs,
and print each of them.
original = [‘phone case’,
printed = []

‘pendant’, ‘ring‘]

print_models(original(:], printed)
print("\nOriginal:", original)
print("Printed:", printed)

Passing an arbitrary number of arguments
Qw‘dwn- ¥S you won't know how many arguments a
il need to accept Fﬁrhﬁn aflo ou 1o C“hCClJﬂ
nber of argume

A parameter that accepts an amnmry r'u'nhpr of
5 must come last in the funchion definition

The ** operator allows a parameter to collect an arbitrary
number of keyword arguments

Collecting an arbitrary number of arguments

def make_pizza(size, *toppings):
“"“"Make a pizza."""
print("\nMaking a " + size + "
print(“Toppings:")
for topping in toppings:
print("- " + topping)

pizza.")

Make three pizzas with different toppings.
make pizza('small', 'pepperoni')
make_pizza('large', 'bacon bits’,
make_pizza('medium', ‘mushrooms’,

‘onions’', ‘'extra cheese')

Collecting an arbitrary number of keyword arguments

def build_profile(first, last, **user_info):
"""Build a user's profile dictionary.™""
Build a dict with the required keys.
profile = {'first': first, 'last': last}

'pineapple’)
‘peppers’,

Add any other keys and values.
for key, value in user_info.items():
profile[key] = value

return profile

Create two users with different kinds
i of information.

user_© = build_profile('albert', ‘einstein’,
location='princeton’)
user_1 = build_profile('marie', 'curie’,

location="paris', field='chemistry')

print(user_8)
print(user_1)

What's the best way to structure a function?
As you can see there are many ways {
function. When you're starting out, aim for s

Wy works. As wu q-wl m{wum\::!)'uu‘:. develop an

s of different

o vn.':nq.r g fur
your functions do what you need them 1o,)

ns. For now
w're duuynguu

Modules
Ymuﬁw&mvymanmmmnﬂamwnmmﬁhLm@da
module, and then import the func

ain program. This

2 your ’n./dulp (s stored in |hn
r main program.)

S.’l.’TTF: adirector)
Storing a funcbon ina module
Fila: pizza.py

def make_pizza(size, *toppings):
"""Make a pizza."""
print("\nMaking a "
print("Toppings:")

for topping in toppings:
print("- " + topping)

lmponlng an entire module

File: making_pizzas.py
Every function in the module is available in the program fite.
import pizza

+ size + " pizza.")

pizza.make_pizza('medium',
pizza.make_pizza('small’,

Importing a specific function
Only the imported functions are available in the program file.

from pizza import make_pizza

'pepperoni')
‘bacon’, 'pineapple’)

make_pizza('medium’,
make_pizza('small',

Giving a module an alias

import pizza as p

‘pepperoni’)
‘bacon’, ‘pineapple’)

p.make _pizza('medium',
p.make_pizza('small’',

Giving a function an alias
from pizza import make_pizza as mp

‘pepperoni')
'bacon’, 'pineapple’)

mp('medium’,
mp('small’,

'pepperoni')
‘bacon', 'pineapple’)

Importing all functions from a module
Don't do this, but recognize it when you see it in others' code. It
can resuft in naming conflicts, which can cause errors.

from pizza import *

make_pizza('medium’,
make_pizza('small',

‘pepperoni’)
‘bacon’, ‘'pineapple’)

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet - Classes

What are classes?

Classes are the foundation of object-oriented
programming. Classes represent real-world things
you want to model in your programs: for example
dogs, cars, and robots. You use a class to make
objects, which are specific instances of dogs, cars,
and robots. A class defines the general behavior that
a whole category of objects can have, and the
information that can be associated with those objects.

Classes can inherit from each other — you can
write a class that extends the functionality of an
existing class. This allows you to code efficiently for a
wide variety of situations.

Creating and using a class

Consider haw we might made/ a car. What information
would we associate with a car, and what behavior would it

have? The information is stored in variables called
altributes, and the behavior is représented by funclions.
Functions that are part of a class are called methods.

The Car class

class Car():
""*A simple attempt to model a car."""

def __init__(self, make, model, year):
“““Initialize car attributes."""
self.make = make
self.model = model
self.year = year

Fuel capacity and level in gallons.
self.fuel capacity = 15
self.fuel_level = @

def fill_tank(self):
““*Fill gas tank to capacity."""
self.fuel_level = self.fuel capacity
print(“Fuel tank is full.")

def drive(self):
""*simulate driving."""
print(“"The car is moving.")

Creating and using a class {cont.)

Creating an object from a class
my_car = Car('audl’', ‘'a4’', 2016)
Accessing attribute values

print(my_car.make)
print(my_car.model)
print(my_car.year)

Calling methods

my_car.fill_tank()
my_car.drive()

Creating multiple objects

my _car = Car('audi', ‘ad4’', 2016)
my_old_car = Car{'subaru', 'outback', 2013)
my_truck = Car('toyota', 'tacoma', 2018)

Modifying attributes

You can modily an atiribute’s value directly, or you can
write methods that manage updating values more carefully

Modifying an attribute directly

my_new_car = Car('audi', 'ad4', 2016)
my_new_car.fuel_level = 5

Writing a method to update an attribute's value

def update_fuel level(self, new_level):
"""Update the fuel level."""
if new_level <= self.fuel_capacity:
self.fuel_level = new_level
else:
print("The tank can't hold that much!")

Writing a method to increment an attribute's value

def add_fuel(self, amount):
"""add fuel to the tank."""
if (self.fuel level + amount
<= self.fuel capacity):
self.fuel level += amount
print("Added fuel.")
else:
print("The tank won't hold that much.™)

Naming conventions
In Python class names are written in CamelCase and object

names are written in lowercase with underscores. Moduies
that contain classes should still be named in lowercase with
underscores

Class inheritance

If the ciass you're wriling is a specialized version of another
class, you can use inhentance, When one class inhenits
from another, it aulo

ally takes on all the attribules and
methods of the parent s. The child class is free fo
introduce new attributes and methods, and overmde
attributes and methods of the parent class

To inhert from anather ciass include the name of the
parent class in parentheses when defining the new ¢lass.

The __init__() method for a child class

class ElectricCar(Car):
"""A simple model of an electric car."""

def __init__(self, make, model, year):
"“*Initialize an electric car."""
super{).__init_(make, model, year)

Attributes specific to electric cars.
Battery capacity in kWh.
self.battery_size = 70

Charge level in X.

self.charge_level = @

Adding new methods to the child class

class ElectricCar(Car):
~=snip--
def charge(self):
“"*"fFully charge the vehicle.
self.charge_level = 100
print(“The vehicle is fully charged.")

Using child methods and parent methods
my_ecar = ElectricCar('tesla’, 'model s', 2016)

my_ecar.charge()
my_ecar.drive()

Finding your workflow
There are many ways to modei real world objecits and

an feel
your first

situations In code, and sometimes that vare
overwheiming. Pick an approach and try Il -
attempt doesn’t work, Iry a different approach.

PYTHON
AR Devnes

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Class inheritance (cont.)

Overriding parent methods

class ElectricCar(Car):
~=snip--
def fill_tank(self):
““"pisplay an error message.
print("This car has no fuel tank!™)

wen

Instances as attributes

A class can have objects as attributes. This allows classes
to work together to mode! complex situations

A Battery class

class Battery():
"""A battery for an electric car.

def __init_ (self, size=79):
“""Initialize battery attributes."""
Capacity in kwh, charge level in %.
self.size = size
self.charge_level = @

def get_range(self):
“"“Return the battery's range."""
if self.size == 70:
return 240
elif self.size == 85:
return 27¢

Using an Instance as an attribute

class ElectricCar(Car):
--snip--

def _ init_ (self, make, model, year):
“""Initialize an electric car.™""
super().__init__ (make, model, year)

Attribute specific to electric cars.
self.battery = Battery()

def charge(self):
"““Fully charge the vehicle."""
self,.battery.charge_level = 100
print(“The vehicle is fully charged.")

Using the instance

my_ecar = ElectricCar(’'tesla’, "model x', 2016)

my_ecar.charge()
print(my_ecar.battery.get_range())
my_ecar.drive()

Importing classes

Class files can get long as you add detalled information and
your program files uncluttered

sas in moduwles and import the

functionality. Ta hel
: store your ¢
25 you need into your main program

Storing classes in a file
car.py
“""Represent gas and electric cars."""
class Car():
"""A simple attempt to model a car."""
--snip—

class Battery():
“""A battery for an electric car.
--snip--

class ElectricCar(Car):
"""A simple model of an electric car.
--snip--

Importing individual classes from a module
my._cars.py

from car import Car, ElectricCar

my_beetle » Car('volkswagen', 'beetle', 2016)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = ElectricCar('tesla’, 'model s°',
2016)

my_tesla.charge()

my_tesla.drive()

Importing an entire module
import car

my_beetle = car.Car(

‘volkswagen', 'beetle’', 2016)
my_beetle.fill_tank()
my_beetle.drive()

my_tesla = car.ElectricCar(

"tesla’, 'model s', 2016)
my_tesla.charge()
my_tesla.drive()

Importing all classes from a module
{Don't do this, but recognize it when you see it.)

from car import *

my_beetle = Car('volkswagen', 'beetle’, 2016)

Classes in Python 2.7
Classes should inherit from object

class ClassName(object):
The Car class in Python 2.7

class Car(object):
Child class __init__() method Is different

class ChildClassName(ParentClass):
def _ _init_ (self):
super(ClassName, self)._ _init__ ()

The ElectricCar class in Python 2.7
class ElectricCar(Car):
def __init_ (self, make, model, year):

super(ElectricCar, self).__init_ (
make, model, year)

Storing objects in a list

A list hold as many items as yol
make a |

themin a

cars, and make sure all the cars are ready o drive
A fleet of rental cars

from car import Car, ElectricCar

Make lists to hold a fleet of cars.
gas_fleet = []
electric_fleet = []

Make 500 gas cars and 258 electric cars.

for _ in range(508):
car = Car('ford’, '"focus', 2016)
gas_fleet.append(car)

for _ in range(25@):
ecar = ElectricCar('nissan’', "leaf', 2016)
electric_fleet.append(ecar)

Fill the gas cars, and charge electric cars,
for car in gas_fleet:

car.fill_tank()
for ecar in electric_fleet:

ecar.charge()

print(“Gas cars:", len(gas_fleet))
print("Electric cars:”, len(electric_fleet))

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet —
Files and Exceptions

What are files? What are exceptions?

Your programs can read information in from files, and
they can write data to files. Reading from files allows
you to work with a wide variety of information; writing
to files allows users to pick up where they left off the
next time they run your program. You can write text to
files, and you can store Python structures such as
lists in data files.

Exceptions are special objects that help your
programs respond to errors in appropriate ways. For
example if your program tries to open a file that
doesn't exisl, you can use exceptions to display an
informative error message instead of having the
program crash.

Reading from a file

To read from a file your program nesds to open the file and
then read the contents of the filte. You can read the entire

contents of the file at once, or read the lile line by line. The
with statement makes sure the file is closed properly when
the program has finished accessing the file

Reading an entire file at once

filename = ‘siddhartha.txt’
with open(filename) as f_obj:
contents = f_obj.read()

print(contents)

Reading line by line

Each line that's read from the file has a newline character at the
end ol the line, and the print function adds ils own newline
character. The rstrip() method gets rid of the the extra blank lines
this would result in when printing to the terminal.

filename = ‘siddhartha.txt’
with open(filename) as f_obj:
for line in f_obj:
print(line.rstrip())

Reading from a file (cont.)

Storing the lines in a list

filename = 'siddhartha.txt’

with open(filename) as f_obj:
lines = f_obj.readlines()

for line in lines:
print(line.rstrip())

Writing to a file

Passing the W' argument to open() tells Python you want to

write to the file. Be careful; this will erase the contents of
the file if it already exists. Passing the ‘a’ argument tells
Python you want to append to the end of an existing file

Writing to an empty file
filename = 'programming.txt’

with open(filename, 'w') as :
f.write("I love programming!")

Writing multiple lines to an empty file

filename = 'programming.txt’

with open(filename, 'w') as f:
f.write("I love programming!\n")
f.write("I love creating new games.\n")

Appending to a file

filename = 'programming.txt’

with open(filename, 'a') as f:
f.write("I also love working with data,\n")
f.write("I love making apps as well.\n")

File paths

When Python runs the open() function, it looks for the file in
the same directory where the program that’s being excuted

IS stored. You can open a file from a subfolder using a
relative path. You can also use an absolute path to open
any file on your system

Opening a file from a subfolder
f_path = "text_files/alice.txt"

with open(f_path) as € _obj:
lines = f_obj.readlines()

for line in lines:
print(line.rstrip())

File paths (cont.)

Opening a file using an absolute path
f_path = "/home/ehmatthes/books/alice, txt"

with open(f_path) as f_obj:
lines = f_obj.readlines()

Opening a file on Windows
Windows will sometimes interpret forward siashes incorrectly. If
you run Into this, use backslashes in your file paths.

f_path = “C:\Users\ehmatthes\books\alice.txt"

with open(f_path) as f_obj:
lines = f_obj.readlines()

The try-except block

When you think an error may occur, you can write-a try
except block (o handle the exception that might be raised

The try black lelis Python (o Iry running some code, and the
except block fells Python what to do if the code results in a
particular kind of etror.

Handling the ZeroDivisionError exception

try:
print(5/8)
except ZeroDivisionError:

print(“You can't divide by zero!")

Handling the FileNotFoundError exception

f_name = 'siddhartha.txt’
try:
with open(f_name) as f_obj:
lines = f_obj.readlines()
except FileNotFoundError:
msg = “Can't find file {@}.".format(f_name)
print(msg)

Knowing which exception to handle
It can be hard to know whal kind of exceplion to handle

when wniting code. Try w
and make it generale
what kind of exception

ting your code without a try b
rror. The traceback will tell you

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

The else block

The try bi 1ould only contain code that may cause an

arror. Any code that depends on the try biock running
succeassiully showld be placed in the eise block

Using an else block
print(“Enter two numbers. I'll divide them.")

x = input(“First number: “)
y = input(“Second number:)

try:

result = int(x) / int(y)
except ZeroDivisionError:

print(“You can't divide by zero!")
else:

print{result)

Preventing crashes from user input
Without the except block in the following example, the program
would crash if the user tries to divide by zero, As writfen, it wil
handle the emor gracefully and keep running.

""“aA simple calculator for division only."""

print(“Enter two numbers. I'll divide them.")
print("Enter ‘q' to quit.™)

while True:
x = input(“\nFirst number:)
if x == 'q":
break
y = input{“Second number: ")
if y == 'q":
break

try:

result = int(x) / int(y)
except ZeroDivisionError:

print(“You can't divide by zero!")
else:

print{result)

Deciding which errors to report

Well-wnitten, properly tested code is nol very pro

internal errors such as syntax or lo

time program depends on something external such as
{ or the existe of a file, there's a possibility of

an exceplion being rai

It's up to you how to communicate errors to your users
Sometimes users need ta know if a file is missing,
sometimes it’s better to handle the error silently. A little
axpenence will help you know how much o report

Failing silently

Sometimes you want your program lo just continue running

when it encounters an error, without reporting the emror o
ing the pass statement in an else block allows

Using the pass statement in an else block

f_names = ['alice.txt', 'siddhartha.txt’',
'moby_dick.txt', 'little_women.txt']

for f_name in f_names:
Report the length of each file found.
try:
with open(f_name) as f_obj:
lines = f_obj.readlines()
except FileNotFoundError:
Just move on to the next file.
pass
else:
num_lines = len(lines)
msg = "{@} has {1} lines.".format(
f_name, num_lines)
print(msg)

Avoid bare except blocks

Exception-handling code shouwld catch specific exceplions
that you expec! to happen during your program’s execution
A bare except block will catch all exceplions, including
keyboard interrupts and syst its you might need when

forcing a program 1o el

If you want 1o use a try block and you're not sure which
exception to catch, use Exceplion. It will cateh most
excephons, but still alfow you to Interrupt programs
intentionally

Don't use bare except blocks
try:
Do something

except:
pass

Use Exception instead

try:
Do something
except Exception:
pass

Printing the exception

try:
Do something
except Exception as e:
print(e, type(e))

Storing data with json

The json module allows you to dump simpie Python data
structures into a file, and load the data from that file the
nex! lime the program runs. The JSON data formal is not
specific lo Python, 50 you can share this kind of data with

people who work in other languages as well

Knowing how [0 manage exce (s important when
working with Wy want! 1o make sure
the data you'rs trying to load exists before working with it.

Using json.dump() to store data

"

"""Store some numbers.
import json
numbers = [2, 3, 5, 7, 11, 13]

filename = 'numbers.json’
with open(filename, 'w') as f_obj:
json.dump(numbers, f_obj)

Using json.load() to read data
“""Load some previously stored numbers."""

import json

filename = 'numbers.json’
with open(filename) as f_obj:
numbers = json.load(f_obj)

print(numbers)

Making sure the stored data exists
import json

f_name = 'numbers.json’

try:
with open(f_name) as f_obj:
numbers = json.load(f_obj)
except FileNotFoundError:
msg = "Can’t find {0}.".format(f_name)
print({msg)
else:
print{numbers)

Practice with exceptions
Take a program yt

ve already written that prompls for user

input, and add some error-handling code o the program.,

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet —
Testing Your Code

Why test your code?

When you write a function or a class, you can also
write tests for that code. Testing proves that your
code works as it's supposed to in the situations it's
designed to handle, and also when people use your
pragrams in unexpected ways. Writing tests gives
you confidence that your code will work correctly as
more people begin to use your programs. You can
also add new features to your programs and know
that you haven't broken existing behavior.

A unit test verifies that one specific aspect of your
code works as it's supposed to. A lest case is a
collection of unit tests which verify your code’s
behavior in a wide variety of situations.

Testing a function: A passing test
Python's unittest module provides tools for testing your

code. To try it out, we'll create a function that (uu.'n:, a full
name. Wa'll use the function in a regular program, and then
bulld a test case for the function.

A function to test

Save this as full_names.py

def get_full name(first, last):
"""Return a full name.,"""
full_name « "{@} {1}".format(first, last)
return full _name.title()

Using the function
Save this as names.py

from full_names import get_full_name

janis = get_full name('janis’, 'joplin')
print(janis)
= get_full_name('bob', 'dylan’)

print(bob)

Building a testcase with one unit test

To build & test case, make a class that inhenits from
unittest.TestCase and write methods that begin with test_.
Save this as test_ful_names.py

import unittest
from full_names import get_ full_name

class NamesTestCase(unittest.TestCase):
“"“Tests for names.py."""

def test_first_last(self):
""“Test names like Janis Joplin.
full_name = get_full_name('janis’',
‘joplin‘®)
self.assertEqual(full_name,
‘Janis Joplin')

unittest.main()

Running the test

Python reports on each unit test In the test case. The dot reports a
single passing test. Python informs us that it ran 1 test in less than
0.001 seconds, and the OK lets us know that ail unit tests in the
fest case passed.

Ran 1 test in 2.000s

OK

Testing a function: A failing test
Failing tests are important. they tell you that a change in the

code has affected existing behavior. When a lest falls, you
need o modily the code 5o the existing behavior still works.

Modifying the function
Well modify get_full_name() so i handles middle names, but
wall do it in a way that breaks existing behavior.

def get_full name(first, middle, last):
"""Return a full name."""
full name = "{@} {1} {2)}".format(first,
middle, last)

return full _name.title()
Using the function

from full _names import get_ full name

john = get full name('john',
print(john)

‘lee’', 'hooker')

david = get_full name('david’,
print{david)

‘lee’, 'roth')

Testing a function (cont.) A failing test (cont.)

Running the test

When you change your code, it's important fo run your existing
tests. Thsnwﬂkﬂynuumndnwﬂn4ﬂuvgssyuulnadoamead
axisting behavior.

E
ERROR: test_first_last (_ main__.NamesTestCase)
Test names like Janis Joplin.
Traceback (most recent call last):
File "test_full_names.py”, line 1@,
in test_first_last
‘Joplin')
TypeError: get_full_name() missing 1 required
positional argument: ‘last”’

Ran 1 test in ©.801s

FAILED (errors=1)

Fixing the code

When a test falls, the code needs to be modified until the test
passes again. (Don't make the mistake of rewriting your tests o fit
your new code,) Here we can make the middie name optional.

def get_full_name(first, last, middle=""'):
“"“Return a full name."™"
if middle:
full_name « “{@} {1} {2}".format(first,
middle, last)
else:
full name = "{@} {1}".format(first,
last)
return full_name.title()

Running the test

Now the test showld pass again, which means our original
functionality is stil intact.

Ran 1 test in ©.e00s

0K

PYTHON
S D

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Adding new tests

You can add as many unit lests Io a test case as you nead.

To write a new lest, add a new method {0 your test case
elass

Testing middie names
We've shown that get_full_name() works for first and las!
names. Lot's test thal it works for middie names as well.

import unittest
from full_names import get_full_name

class NamesTestCase(unittest.TestCase):
"""Tests for names.py."""

def test_first_last(self):
“"“Test names like Janis Joplin.™""
full name = get_ full name('janis’,
‘joplin')
self.assertEqual(full_name,
‘Janis Joplin')

def test _middle(self):
“"“Test names like David Lee Roth.""*
full name = get_full name('david’,
‘roth', 'lee')
self.assertEqual(full_name,
'David Lee Roth')

unittest.main()

Running the tests
The two dots represent Iwo passing tests.

Ran 2 tests in ©.000s

OK

A variety of assert methods

Python provides a number of assert methods you can use
{o test your code.

Verify that a==b,ora !|=b

asserttqual(a, b)
assertNotEqual(a, b)

Verify that x is True, or x is False

assertTrue(x)
assertFalse(x)

Verify an item is in a list, or not in a list

assertIn(item, list)
assertNotIn(item, list)

Testing a class

Testing a class is similar to testing a function. si
mostly be testing your methods

A class to test
Save as accountant. py

class Accountant():
"""Manage a bank account."""

def __init_ (self, balance=0):
self.balance = balance

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

Building a testcase
For the first test, we'll make sure we can start out with different
initial balances, Save this as test_accountant.py.

import unittest
from accountant import Accountant

class TestAccountant(unittest.TestCase):
"""Tests for the class Accountant."""

def test_initial balance(self):
Default balance should be 8.
acc = Accountant()
salf.assertEqual(acc.balance, 9)

Test non-default balance.
acc = Accountant(100)
self.assertéqual(acc.balance, 106)

unittest.main()
Running the test

Ran 1 test in ©.000s

When is it okay to modify tests?
In general you shouldnt modify a test once It's written
! 8 new code you've written
ly, and you need to modify
S pass
changed, it may be
This usually happens in

If your onginal req
riate to modify som
the early stages of a project when desired behavior is still
being sorted oul.

The setUp() method

When testing a

S, you usually have to ke an ins
tup() method is run before every |
you make in setUp() are availabie in

of the The
Any instamn
fest you wrile.

Using setUp() to support multiple tests
The instance self.acc can be used in each new test.

import unittest
from accountant import Accountant

class TestAccountant(unittest,Testlase):
"""Tests for the class Accountant."""

def setUp(self):
self.acc = Accountant()

def test_initial balance(self):
Default balance should be 0.
self.assertéqual(self.acc.balance, @)

Test non-default balance.
acc = Accountant(10@)
self.assertEqual(acc.balance, 100)

def test_deposit(self):
Test single deposit.
self.acc.deposit(100)
self.assertEqual(self.acc.balance, 100)

Test multiple deposits.
self.acc.deposit(100)
self.acc.deposit(160)
self.assertEqual(self.acc.balance, 300)

def test_withdrawal(self):
Test single withdrawal.
self.acc.deposit(1060)
self.acc.withdraw(108)
self.assertEqual(self.acc.balance, 90@)

unittest.main()
Running the tests

Ran 3 tests in 9.001s

OK

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet - Pygame

What is Pygam

Pygame is a framework for making games using
Python. Making games is fun, and it's a great way to
expand your programming skills and knowledge.
Pygame takes care of many of the lower-level tasks
in building games, which lets you focus on the
aspects of your game that make it interesting.

Installing Pygame
Pygame runs on all systems, but selup is Iy different
ume you're using

ion of Pygame. If
{ system, see the more
delafied notes al hilp.//ehmatthés.github.jo/pec).

Pygame on Linux

$ sudo apt-get install python3-dev mercurial
1ibsdl-imagel.2-dev libsdl2-dev
libsdl-ttf2.0-dev

$ pip install --user
hg+http://bitbucket.org/pygame/pygame

Pygame on OS X
This assumes you've used Homebrew to install Python 3.

$ brew install hg sdl sdl_image sdl_ttf
$ pip install --user
hg+http://bitbucket.org/pygame/pygame

Pygame on Windows
Find an installer at
hitps//bitbucket. or
httpz/www.lifd uci eduw/~gohike pythonlibs/#pygame that matches
your version of . Run the installer file if it's a .exe or .msi fite.
Ifit'’s a .whi file, use pip to install Pygame.
> python -m pip install --user
pygame-1.9.2a0-cp35-none-win32.whl

Testing your installation

To test your instaliation, open a terminal session and try to import
Pygame. If you don't get any emror messages. youwr instaiiation was
successiul.

$ python

>>> import pygame

>35>

Starting a game
The following code sets up an emply game window, and

starts an even! loop and a loop that continually refreshes
the screen

An empty game window

import sys
import pygame as pg

def run_game():
Initialize and set up screen.
pg.init()
screen = pg.display.set_mode((1200, 80@))
pg.display.set_caption("Alien Invasion")

Start main loop.
while True:
Start event loop.
for event in pg.event.get():
if event.type == pg.QUIT:
sys.exit()

Refresh screen.
pg.display.flip()

run_game()

Setting a custom window size

The display.set_mode() function accepts a tuple that defines the
screen size.

screen_dim = (1200, 800)

screen = pg.display.set_mode(screen_dim)

Setting a custom background color
Colors are defined as a luple of red, green, and biue values, Each
value ranges from 0-255.

bg_color = (2308, 238, 238)
screen.fill(bg_color)

Pygame rect objects
Many objects in a game can be lreated as simple

rectangles, rather than their actual shape. This simplifies
code without noticeably atfecting game play. Pygame has a
rect object that makes it easy to work with game objects

Getting the screen rect object

We already have a screen object, we can easily access the rect
object associated with the screen.

screen_rect = screen.get_rect()

Finding the center of the screen
Rect objects have a center attribute which stores the center point,

screen_center = screen_rect.center

Pygame rect objects (cont.)

Useful rect attributes

Once you have a rect object, there are a number of attnbutes that
are useful when positioning objects and detecting relative positions
of objects. (You can find more atiributes in the Pygame
documentation.)

Individual x and y values:
screen_rect.left, screen_rect.right
screen_rect.top, screen_rect.bottom
screen_rect.centerx, screen_rect.centery
screen_rect.width, screen_rect.height

Tuples
screen_rect,center
screen_rect.size

Creating a rect object

You can create a rect object from scralch. For example a small rect
object that's filted in can represent a bullet in a game. The Rect()
class takes the coordinates of the upper left corner, and the width
and height of the rect. The draw.rect() function takes a screen
object, a color, and a rect. This function fills the given ract with the
given caoilor.

bullet_rect = pg.Rect{1e8, 18, 3, 15)

color = (100, 108, 1e0)

pg.draw.rect(screen, color, bullet_rect)

Working with images
Many objects in a game are images that are moved around

the ven It's st to use bitmap ((bmp) image files, but
you can also configure your system to work with jpg, png,
and gif files as well

Loading an image
ship = pg.image.load('images/ship.bmp’)
Getting the rect object from an image
ship_rect = ship.get_rect()
Positioning an image
With rects, it's easy to position an image wherever you want on the
screen, or in relation to another object. The fallowing code
pasitions a ship otyect al the bottorn center of the screen.
ship_rect.midbottom = screen_rect.midbottom

PYTHON
CHAH Devnes

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Working with images (cont.)

Drawing an image to the screen

Once an image is loaded and , you can draw it fo the
scraen with the biit() methad. The bil() mathod acts on the screen
object, and takes the image object and image rect as arguments.

Draw ship to screen.
screen.blit(ship, ship_rect)

The blitme() method
Game objects such as ships are often wrtten as classes. Then a
bitme() method is usually defined, which draws the object o the
screen.
def blitme(self):
“““Draw ship at current location."""
self.screen.blit(self.image, self.rect)

Responding to keyboard input

Pygame waltches for events such as key prasses and

You can detect any event you care about in
t loop, and respand with any action that's
appropriate for your game

Responding to key presses
Pygame's main event loop registers a KEYDOWN event any time a
key is prassed. When this happens, you can check for specific
keys.
for event in pg.event.get():
if event.type == pg.KEYDOWN:
if event.key == pg.K_RIGHT:
ship_rect.x += 1
elif event.key == pg.K_LEFT:
ship rect.x -= 1
elif event.key == pg.K_SPACE:
ship.fire_bullet()
elif event.key == pg.K_g:
sys.exit()

Responding to released keys
When the user releases a key, a KEYUP event is trniggered,

if event.type == pg.KEYUP:
if event.key == pg.K_RIGHT:
ship.moving_right = False

Pygame documentation

The Pygame documentation is really helpful when buiiding
your own games. The home page for the Pygame project is
al hittp:/pygame.org/, and the home page for the

documentation (s at hitp=//pygame.org/docs/.

The most uselul part of the documentation are the pages
aboul specific parts of Pygame, such as the Recl() class
and the sprite module. You can find a list of these elements
al the top of the help pages

Responding to mouse events

Pygame's event loop registers an event any time the
mouse moves, or a mouse button Is pressed or released

Responding to the mouse button

for event in pg.event.get():
if event.type == pg.MOUSEBUTTONDOWN :
ship.fire_bullet()

Finding the mouse position
The mouse position is returned as a tuple.

mouse_pos = pg.mouse.get_pos()

Clicking a button
You might want to know if the cursor is over an object such as a
button. The rect.collidepoint() method retums true when a point is
inside a rect object.

if button_rect.collidepoint(mouse_pos):
start_game()

Hiding the mouse

pg.mouse,.set_visible(False)

Pygame groups

Pygame has a Group class which makes working with a

group af similar abjects easler. A group is like a fist, with
some extra functionaiity that's helpful when bullding games

Making and filling a group
An object that will be placed In a group must inherit from Spuite.

from pygame.sprite import Sprite, Group
def Bullet(Sprite):
def draw_bullet(self):

def update(self):

bullets = Group()

new_bullet « Bullet()
bullets.add(new_bullet)

Looping through the items in a group
The sprites() mathod returns all the mambers of a group.

for bullet in bullets.sprites():
bullet.draw_bullet()

Calling update() on a group
Calting update() on a group aufomatically calls update() on each
member of the group.

bullets.update()

Pygame groups (cont.)

Removing an item from a group
It's impovrtant to delete efements that will never appear again in the
game, s0 you don waste memory and resowces.

bullets.remove(bullet)

Detecting collisions

You can detect when a single object collides with any

member of a group. You can also delect when any member
of one group coliides with a member of another group

Collisions between a single object and a group
The sprtecolideany() function takes an object and a group, and
returns True if the object overlaps with any member of the group.
if pg.sprite.spritecollideany(ship, aliens):
ships_left -= 1

Coliisions between two groups

The sprite.groupcollide() function takes two groups, and wo
booleans. The function returns & dictionary containing information
about the members that have coliided. The booleans tell Pygame
whether to delete the members of efther group that have colided.

collisions = pg.sprite.groupcollide(
bullets, aliens, True, True)

score += len(collisions) * alien_point_value
Rendering text

You can use text for a vaniety of purposes in a game, For
., and you

example you can share information with playe
can display a score

Displaying a message

The following code defines a message, then a color for the text and
the background color for the message. A font is defined using the
default system forit, with a font size of 48. The font.rendery)
function is used fo create an image of the message, and we get the
rect object associated with the image. We then center the image
on the screen and display it.

msg = “"Play again?”
msg_color = (100, 100, 100)
bg_color = (238, 238, 230)

f = pg.font.SysFont(None, 48)

msg_image = f.render(msg, True, msg_color,
bg_color)

msg_image_rect = msg_image.get_rect()

msg_image_rect.center = screen_rect,center

screen.blit(msg_image, msg_image_rect)

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet —
matplotlib

What is matplotlib?

Data visualization involves exploring data through
visual representations. The matplotiib package helps
you make visually appealing representations of the
data you're working with. matplotlib is extremely
flexible; these examples will help you get started with
a few simple visualizations,

Installing matplotlib

malplothb runs on all systems, bul setup is slightly different
depending on your OS. If the minimal instructions here

ed instructions at

dont work for you, see the more det
http//ehmatthes.github, lo/pec/. You should also consider
installing the Anaconda distrubution of Python from

hitpsZicontinuum.io/downioads/, which includes malplothib

matplotlib on Linux
$ sudo apt-get install python3-matplotlib

maltplotlib on OS X
Start a terminal session and enter isport matplotlib fo see
it's already installed on your system. If not, try this command:

$ pip install --user matplotlib

matplotlib on Windows

You first need to install Visual Studio, which you can do from
https//dev.windows.com/. The Community edition is free. Then go
fo https:/ipypi.python.arg/pypi/maiplotlib’ or

httpwww. ifd uic.edw/~gohike/pythonibs/#matplotlit and download
an appropriate installer file.

Line graphs and scatter plots

Making a line graph
import matplotlib.pyplot as plt

x_values =~ [0, 1, 2, 3, 4, 5]
squares = [0, 1, 4, 9, 16, 25]
plt.plot(x_values, squares)
plt.show()

Line graphs and scatter plots (cont.)

Making a scatter plot

The scatler() function takes a list of x values and a list of y values,
and a variety of optional arguments. The s=18 argument conlrols
the size of each point.

import matplotlib.pyplot as plt

x_values = list(range(1008))
squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, s5=10)
plt.show()

Customizing plots

Plols can be customized in a wide variely of ways. Just
aboul any element of a plot can be customized.

Adding titles and labels, and scaling axes
import matplotlib.pyplot as plt

x_values = list(range(1008))
squares = [x**2 for x in x_values]
plt.scatter(x_values, squares, s=10)

plt.title("Square Numbers”, fontsize=24)

plt.xlabel(“Value®, fontsize=18)

plt.ylabel("Square of Value", fontsize=18)

plt.tick_params(axis="both', which="major",
labelsize=14)

plt.axis([@, 11ee, ©, 110000e])

plt.show()

Using a colormap
A colormap varies the paint colors from one shade to another,
based on a certain value for each point. The vaive used to
determine the color of each point is passed to the ¢ argument, and
the cmap argument specifies which colormap to use.

The edgecolor="none' argument removes the black outling
from each paint.

plt.scatter(x_values, squares, c=squares,
cmapeplt.cm.Blues, edgecolors‘none’,
s=18)

Sqeww Nurmers

//

senos o mbre
M M »

Customizing plots (cont.)

Emphasizing points
You can piot as much data as you want on one plot. Here we re-
plot the first and last points larger fo emphasize them.

import matplotlib.pyplot as plt

x_values = list(range(1000))

squares = [x**2 for x in x_values]

plt.scatter(x_values, squares, c=squares,
cmap=plt.cm.Blues, edgecolor='none',
5=10)

plt.scatter(x_values[®], squares[®], c="green’,
edgecolor="none', s=1008)

plt.scatter(x_values[-1], squares[-1], c="red’,
edgecolor="none', $=180)

plt.title("Square Numbers", fontsize=24)
--snip--

Removing axes
You can customize or remove axes enlfirely. Here's how lo access
each axis, and hide ir.

plt.axes().get_xaxis().set_visible(False)
plt.axes().get_yaxis().set_visible(False)

Setting a custom figure size

You can make your piot as big or small as you want. Before
plotting your data, add the following code. The dpi argument is
optional; if you don't know your system’s resolution you can omit
the argument and adjust the figsize argument accordingly.

plt.figure(dpi=128, figsize=(10, 6))
Saving a plot

The matplotib viewer has an interactive save butfon, but you can

also save your visualizations programmatically. To do so, replace
plt.show() withplt.savefig(). The bbox_inches='tight"'

argument tnms extra whitespace from lhaplot
plt.savefig('squares.png', bbox_inches='tight’)

Online resources
The maipiothb

gallery and documeniation are al
http/matpiotlib,org/. Be sure fo visit the examples, gallery
and pypiot links

PYTHON
CRASH COURSE

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Multiple plots

You can make as many plots as you want on one figure

When you make muiltiple pi u can emphasize
relationships in the dala. For example you can fill the space
between two sefs of data

Plotting two sets of data
Here we use plt.scatter() wice to plot square numbers and
cubes on the same figure.

import matplotlib,pyplot as plt

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

plt.scatter(x_values, squares, c='blue',
edgecolor="'none', s=20)

plt.scatter(x_values, cubes, c='red',
edgecolor="none', $=20)

plt.axis([@, 11, @0, 11008])
plt.show()

Filling the space between data sets

The fill_between() method fills the space between two data
sefs. I takes a serles of x-values and two series of y-values. It also
takes a facecolor to use for the fil, and an optional alpha
argument that controls the color’s transparency.

plt.fill_between(x_values, cubes, squares,
facecolor="blue', alpha=8.25)

Working with dates and times
Many interesting daia sets have a date or ime as the x-

value. Python's datetime module helps you work with this
kind of data

Generating the current date
The datetime.now() function retums a datetime object
representing the current date and time.

from datetime import datetime as dt

today = dt.now()
date_string = dt.strftime(today, '%m/%d/%Y')
print(date_string)

Generating a specific date

You can also generate a datetime object for any date and time you
want. The positional order of arguments is year, month, and day.
The hour, minute, second, and microsecond arguments are

optional.
from datetime import datetime as dt

new_years = dt(2017, 1, 1)
fall_equinox = dt(year=2016, month=9, day=22)

Working with dates and times (cont.)

Datetime formatting arguments

The steftime() function generates a formatted string from a
datetime object, and the strptime() function genereates a
datetime abject from & string. The following codes let you work with

*A Weekday name, such as Monday
%8 Month name, such as January
x*m Month, as a number (81 to 12)
xd Day of the month, as a number (81 to 31)
xY Four-digit year, such as 2016
Xy Two-digit year, such as 16

XH Hour, in 24-hour format (8@ to 23)

X1 Hour, in 12-hour format (€1 to 12)

*p AM or PM

™M Minutes (@@ to 59)

%5 Seconds (8@ to 61)

Converting a string to a datetime object
new_years = dt.strptime('1/1/2017', 'Sm/Xd/%Y')

Converting a datetime object to a string

ny_string = dt.strftime(new_years, '¥B %d, AY')
print{ny_string)

Plotting high temperatures

The following code creates a list of dates and a comresponding st
of high temperatures. If then plots the high temperatures, with the
date labels displayed in a specific format.

from datetime import datetime as dt

import matplotlib.pyplot as plt
from matplotlib import dates as mdates

dates = |
dt(2016, 6, 21), dt(2016, 6, 22),
dt(2016, 6, 23), dt(2016, 6, 24),
1

highs = [57, 68, 64, 59]
fig = plt.figure(dpi=128, figsize=(10,6))
plt.plot(dates, highs, c="red')
plt.title("Daily High Temps", fontsize=24)
plt.ylabel("Temp (F)", fontsize=16)
x_axis = plt.axes().get_xaxis()
x_axis.set_major_formatter(
mdates.DateFormatter('%B %d %Y')
)
fig.autofmt_xdate()

plt.show()

Muitiple plots in one figure
You can include as many individual graphs in one figure as

you want. This

) useful, for example, whan comparing
related dala

Sharing an x-axis
The following code plots a sel of squares and a set of cubes on
two separate graphs thal share a common x-axis.

The pit.subplots() function returns a figure object and a tuple
of axes. Each set of axes comesponds o a separate plot in the
figure. The first two arguments control the number of rows and
columns generated in the figure.

import matplotlib.pyplot as plt
%x_vals = list(range(11))

squares = [x**2 for x in x_vals]
cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(2, 1, sharex=True)

axarr{@].scatter(x_vals, squares)
axarr[@].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red’)
axarr{1].set_title('Cubes"’)

plt,.show()

Sharing a y-axis
To share a y-axis, we use the sharey=True argument.

import matplotlib.pyplot as plt

%x_vals = list(range(11))

squares = [x**2 for x in x_vals]

cubes = [x**3 for x in x_vals]

fig, axarr = plt.subplots(l, 2, sharey=True)

axarr[@].scatter(x_vals, squares)
axarr[@].set_title('Squares')

axarr[1].scatter(x_vals, cubes, c='red')
axarr[1].set_title('Cubes’)

plt.show()

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet — Pyqal

What is Pygal?

Data visualization involves exploring data through
visual representations. Pygal helps you make visually
appealing representations of the data you're working
with. Pygal is particularly well suited for visualizations
that will be presented online, because it supports
interactive elements.

Installing Pygal

Pygal can be Installed using pip
Pygal on Linux and OS X
$ pip install --user pygal
Pygal on Windows
> python -m pip install --user pygal

Line graphs, scatter plots, and bar graphs

T'o make a plot with Pygal, you specily the kind of plot and
then add the data

Making a line graph
To view the ocutput. open the file squares.svg in a browser.

import pygal

x_values = [8, 1, 2, 3, 4, 5]
squares = [@, 1, 4, 9, 16, 25]

chart = pygal.Line()
chart.force_uri_protocol = 'http’
chart.add('x"*2"', squares)
chart,render_to_file('squares.svg')

Adding labels and a title
--snip-~
chart = pygal.Line()

chart.force_uri_protocol = 'http’
chart.title = "Squares"
chart.x_labels = x_values
chart.x_title = "Value"
chart.y_title = "Square of Value”
chart.add('x"*2"', squares)
chart.render_to_file('squares.svg')

Line graphs, scatter plots, and bar graphs (cont.)

Making a scatter plot

The data for a scatter plot needs to be a list containing tuples of
the form (x. y). The stroke=False argument tells Pygal to make
an XY chart with no line connecting the points.

import pygal

squares = [
(6, @), (1, 1), (2, 4), (3, 9),
(4, 16), (5, 25),

chart = pygal.XY(stroke=False)
chart.force_uri_protocel = 'http'
chart.add('x"2', squares)
chart.render_to_file('squares.svg')

Using a list comprehension for a scatter plot
A list comprehension can be used lo effficiently make a dataset for
a scatter plot.

squares = [(x, x**2) for x in range(1000)]

Making a bar graph
A bar graph requires a list of values for the bar sizes. To label the
bars, pass a list of the same length fo x_labels.

import pygal

outcomes = [1, 2, 3, 4, 5, 6]
frequencies = [18, 16, 18, 17, 18, 13])

chart = pygal.Bar()
chart.force_uri_protocol = 'http'
chart.x_labels = outcomes
chart.add('D6', frequencies)
chart.render_to_file('rolling dice.svg')

Making a bar graph from a dictionary

Since each bar needs a label and a value, a dictionary /s a great
way lo store the data for a bar graph, The keys are used as the
labels along the x-axis, and the values are used [0 determine the
height of each bar.

import pygal

results = {
1:18, 2:16, 3:18,
4:17, 5:18, 6:13,
}

chart = pygal.Bar()
chart.force_uri_protocol = 'http’
chart.x_labels = results.keys()
chart.add('D6', results.values())
chart.render_to_file('rolling dice.svg')

Multiple plots

You can add as much data as you want when making a
visualization

Plotting squares and cubes
import pygal

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

chart = pygal.Line()
chart.force_uri_protocel = ‘http'
chart,.title = "Squares and Cubes”
chart.x_labels = x_values

chart.add('Squares', squares)
chart.add('Cubes’, cubes)
chart.render_to_file(squares_cubes.svg')

Filling the area under a data series

Pygal allows you to fil the area under or over each series of dala.
The default is to 1l from the x-axis up, but you can fill from any
horizontal fine using the zero argument.

chart = pygal.Line(fill=True, zero=9)

Online resources
The documentation for Pygal is available at
hitp//'www.pygal.org/

Enabling interactive features

If you're viewing svg output inn a browser, Pygal needs 1o
render the oulpul file in a specific way. The

force uri protocol attribule for chart objects needs lo
be setlo "http'.

PYTHON
SRS Deves

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Stylmg plots

lomize many elements of a plot
“ew.da'1quhunxcs,and(ndny'upnons for
Jrnm:dz \al plot elements

Using built-in styles
To use buwilt-in styles, import the style and make an instance of the

slyle class. Then pass the style object with the style argument
when you make the chart object.

import pygal
from pygal.style import LightGreenStyle

x_values = list(range(11))
squares = [x**2 for x in x_values]
cubes = [x**3 for x in x_values]

chart_style = LightGreenStyle()

chart = pygal.lLine(style=chart_style)
chart,force_uri_protocol = 'http'
chart.title = “Squares and Cubes"
chart.x_labels = x_values

chart.add('Squares', squares)
chart.add('Cubes’, cubes)
chart.render_to_file('squares_cubes.svg')

Parametric built-in styles
Some bullt-in styles accept a custom color, then generate a theme
based on that color,

from pygal.style import LightenStyle

--snip--
chart_style « LightenStyle('#336688')
chart = pygal.Line(style=chart_style)
--snip--

Customizing individual style properties
Style objects have a number of properties you can set individually.

chart_style = LightenStyle('#336688')
chart_style.plot_background = '#CCCCCC'
chart_style.major_label_font_size = 20
chart_style.label font_size = 16
--snip--

Custom style class
You can start with a bare style class, and then set only the
properties you care about.

chart_style = Style()
chart_style.colors = [

'®#CCCCCC', "RAAAAAA', '#888888']
chart_style.plot_background = '#EEEEEE’

chart = pygal.Line(style=chart_style)
~=snip-~

Styling plots (cont.)

Configuration settings
Some settings are controlled by a Config object.

my_config = pygal.Config()
my_config.show_y_guides = False
my_config.width = 1000
my_config.dots_size = S

chart » pygal.Line(configsmy config)
--snip--

Styling series
You can give each seres on a chart different slyle seltings.

chart,add('Squares', squares, dots_size=2)
chart,add('Cubes', cubes, dots_size=3)

Styling individual data points
You can style individual data points as well. To do so, wite a

dictionary for each data point you want to customize, A ‘value'

key s required, and other properies are optional,
import pygal

repos = [
{

'value': 20506,
‘color';: '#3333CC',
'xlink': 'http://djangoproject.com/’,
b
20054,
12607,
11827,
]

chart = pygal.Bar()
chart, force_uri_protocol = 'http'
chart,.x_labels = [
‘django’, ‘requests', ‘'scikit-learn’,
'tornado’,
]
chart.y_title = 'Stars'
chart.add('Python Repos', repos)
chart.render_to_file('python_repos.svg')

Plottmg g(obal datasets

and you can add any daia
[_‘M.d IS i led b ng, oy
r'. at show data when users hover

Installlng the world map module
The world map module is not included by default in Pygal 2.0. It
can be instatted with pip:

$ pip install --user pygal _maps_world
Making a world map

from pygal.maps.world import World

wm = World()

wm. force_uri_protocol = 'http'

wa.title = "North America’

wm.add(‘North America', [‘ca’, 'mx', ‘us'])

wm.render_to_file('north_america.svg')

Showing all the country codes
In order to make maps, you need to know Pygal's country codes.
mmummmmammwammw

from pygal.maps.world import COUNTRIES

for code in sorted(COUNTRIES.keys()):
print(code, COUNTRIES[code])

Plotting numerical data on a world map
To plot numerical dala on a map, pass a dictionary to add()
instead of a list.

from pygal.maps.world import World

populations = {
‘ca': 34126000,
‘us‘: 309349009,
‘mx': 113423000,
}

wm = World()

wm.force_uri_protocol = 'http'

wam.title = 'Population of North America’
wm.add('North America', populations)

wm

.render_to_file('na_populations.svg')

More cheat sheets available at
ehmatthes.github.lo/pcc/

Beginner's Python

Cheat Sheet — Django

What is Django?

Django is a web framework which helps you build
interactive websites using Python. With Django you
define the kind of data your site needs to work with,
and you define the ways your users can work with
that data.

Installing Django

It's usualy best to install Django to & virtual environment

wherg your project can be isolated from your other Python

projects. M ymmands assume you're working in an
active virtual environment

Create a virtual environment
$ python -m venv 11 _env

Activate the environment (Linux and OS X)
$ source 11_env/bin/activate

Activate the environment (Windows)
> 11 env\Scripts\activate

Instali Django to the active environment
(11_env)$ pip install Django

Creating a project

To start a project we'll create a new project, creale a
database, and start a developrment server

Create a new project
$ django-admin.py startproject learning_log .
Create a database
$ python manage.py migrate
View the project
After issuing this command, you can view the project at
httpiocaltiost: 8000V,
$ python manage.py runserver

Create a new app
A Dfango project is made up of ane or mare apps.

$ python manage.py startapp learning_logs

Working with models

The data in a Django project is structured as a set of
models.

Defining a model

To define the models for your app, modify the file models.py that
was created in your app’s folder. The __str__ () method tells
Django how to represent data objects based on this model.

from django.db import models

class Topic(models.Model):
"""A topic the user is learning about."""
text = models.CharField(max_length=200)
date_added = models.DateTimeField(
auto_now_add=True)

def _ str_ (self):
return self. text

Activating a model
To use a model the app must be added to the tuple
INSTALLED_APPS, which is stored in the project’s settings.py file.

INSTALLED_APPS = (

-=snip--
'django.contrib,staticfiles’,

My apps
'learning_logs',

)

Migrating the database
The database needs 10 be modified 1o store the kind of data that
the mode! represents.

$ python manage.py makemigrations learning_logs
$ python manage.py migrate

Creating a superuser
A superuser Is a user account that has access to all aspects of the
project.

$ python manage.py createsuperuser

Registering a model

You can ragister your modefs with Django's admin site, which
makes it easier to work with the data in your project. To do this,
modily the app's admin.py fite. View the admin site at
http/Aocalhost:8000/admin/,

from django.contrib import admin
from learning_logs.models import Topic

admin.site.register(Topic)

Building a simple home page
Users interact with a project through web pages, and a

project’s home page can start out as a simple page with no
data. A page usually needs a URL. a view, and a templafte

Mapping a project’s URLs
The project’s main urls.py fife tells Django where 0 find the urls.py
files associated with each app in the project.

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [
url(r'~admin/', include(admin.site.urls)),
url(r'', include('learning_logs.urls’',
namespace="learning_logs')),
]

Mapping an app's URLs

An app’s urls.py file telis Djiango which view lo use for each URL in
the app. Youll need to make this file yourself, and save if in the
app's folder,

from django.conf.urls import url
from . import views

urlpatterns = [
url(r'~$', views.index, name='index'),

]

Writing a simple view

A view lakes information from a request and sends data fo the
browser, often through a template. View functions are stored in an
app's views.py file. This simple view function doesn't pull in any
data, but it uses the template index.him to render the home page.

from django.shortcuts import render

def index(request):
"""The home page for Learning Log.
return render(request,
'learning_logs/index.html')

"

Online resources
he documentation for Django is avallable at

htip.//docs.diangoproject.com/. The Django documentation
1S thorough and user-friendly, so check it out!

PYTHON
CHASH Covnes

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Building a simple home page (cont.)

Writing a simple template

A template sets up the structure for a page. It's a mix of htm! and
tamplate code, which is like Python but not as powerful. Make a
folder called lemplates inside the projoect foider. Inside the
templates folder make another folder with the same name as the
app. This is where the template files should be saved.

<p>Learning Log</p>
<p>Learning Log helps you keep track of your

learning, for any topic you're learning
about.</p>

Template inheritance

Many elements of a web page are repeated on every page

in the site, or e ypageinas on of the site. By wriling
one parent template for the s and one for each section
you can easily modify the iook and feel of your entire site.

The parent template
The parent template defines the elements common to a set of
pages, and defines blocks that will be filled by individual pages.

<p>
<a href«"{¥ url 'learning logs:index' ¥}">
Learning Log

</p>

{% block content %X}{¥ endblock content ¥}

The child template

The child template uses the {% extends X} lemplate tag to pull in
the structure of the parent tempiate. It then defines the content for
any biocks defined in the parent lemplate.

{% extends ‘learning_logs/base.html® %}

{% block content X}
<p>
Learning Log helps you keep track
of your learning, for any topic you're
learning about.
</p>
{% endblock content %}

Template indentation
Python code is usually indented by four spaces. In
or indentation,

templates you'll often see Iwo spaces ¢
because elements tend to be nested mare deeply in
lemplales.

Another model
A new model can use an existing model. The ForeignKey

attribute establishes a connection between instances of the
two related models. Make sure fo migrate the database
after adding a new madel 1o your app

Defining a model with a foreign key

class Entry(models.Model):
"""Learning log entries for a topic."""
topic = models.ForeignKey(Topic)
text = models.TextField()
date_added = models.DateTimeField(
auto_now_add=True)

def __str_ (self):
return self.text[:50] + "..."

Building a page with data

Most pages in a project need to present data that's
fo the current user

URL parameters

A URL often needs to accep! a parameter teiling it which data to
access from the database. The second URL pattemn shown hera
looks for the 1D of a specific topic and stores it in the parameter
topic_id.

urlpatterns = |
url{r'~$', views.index, name='index'),
url(r'~topics/(?P<topic_id>\d+)/$%',
views.topic, name='topic'),
]

Using data in a view
The view uses a parameter from the URL to pull the correct data
from the database. In this example the view is sending a context

dictionary fo the tempiare, containing data that should be displayed

on the page.

def topic(request, topic_id):
“"“Show a topic and all its entries.
topic = Topics.objects.get(id=topic_id)
entries = topic.entry_set,order_by(
'-date_added")
context = {
'topic': topic,
'entries': entries,

e

return render(request,
'learning_logs/topic.html', context)

Restarting the development server

If you make a change lo your project and the change
doesn't seem o have any e try restarting the server
$ python manage.py runserver

Building a page with data (cont.)

Using data in a template
The data in the view function's context dictionary is available
within the template. This data is accessed using template
vanables, which are indicated by doubled curly braces.

The vertical line after a template variable indicates a filter. In this
case a filter called date formats date objects, and the fitter
linebreaks renders paragraphs propery on a web page.

{% extends 'learning_logs/base.html’ %}
{% block content %}
<p>Topic: {{ topic }}</p>

<prEntries:</p>

{% for entry in entries ¥}

<p>
{{ entry.date_added|date:'M d, Y H:i' }}
</p>
<p>
{{ entry.text]|linebreaks }}
</p>
</1i>
{% empty %}
There are no entries yet.
{¥ endfor %}

{% endblock content ¥}

The Django shell

You can explore the data in your project from If

command
line. This is helpful for sting code

Snippets
Start a shell session
$ python manage.py shell

Access data from the project

>>» from learning_logs.models import Topic
>>> Topic.objects.all()

[<Topic: Chess>, <Topic: Rock Climbing>]
>>»> topic = Topic.objects.get(id=1)

>>> topic.text

'Chess’

HOpIng quUeries an

More cheat sheets available at
ehmatthes.github.jo/pcc/

Beginner's Python
Cheat Sheet —

Django, Part 2

Users and forms

Most web applications need to let users create
accounts. This lets users create and work with their
own data, Some of this data may be private, and
some may be public. Django’s forms allow users to
enter and modify their data.

User accounts

User accounts are handled by a dedicated app called
users, Users need (o be abie to register, log in, and log
oul. Diango automates much of this work for you

Making a users app
After making the app, be sure 1o add 'users' (0 INSTALLED_APPS
in the project’s settings.py file.

$ python manage.py Startapp users

Including URLS for the users app
Add a line to the project’s urls.py file so the users app’s URLs are
included in the project.
urlpatterns = [
url(r'Aadmin/', include(admin.site.urls)),
url{r'cusers/', include('users.urls’',
namespaces='users')),
url(r'', include('learning_logs.urls’',
namespace="learning_logs')),
]

Using forms in Django
There are a number of ways to create forms and work with
them, You can use Django's defaulls, or completely
customize your forms. For a simpie way (0 el users enter
dala based on your models, use a ModelForm. This creates
a form that allows users o enter data that will populate the
a2 MOC

Ti fer view on the back of this sheel shows a simple

1 to form processing. If the view doesnt receive

data from a lorm, it responds with & blank form. It it
recelves POST data from a form, it validates the data and
then saves Il 1o the database

fie "

Defining the URLs
Users will need to be able fo log in, log out, and register. Make &
new urls.py file in the users app folder. The login view is a default
view provided by Django.
from django.conf.urls import url
from django.contrib.auth.views import login
from . 1lmport views
urlpatterns = [
url(r'*~login/$', login,
{'template_name': 'users/login.html'},
name="'login'),
url(r‘*logout/$', views.logout_view,
name="logout"'),
url(r'*register/$"', views.register,
name="'register’),
I

The login template

The lfogin view is provided by default, but you need to provide your
own login template. The tempiate shown here dispiays a simple
fogin form, and provides basic error messages. Make a tempiates
foider in the users folder, and then make a users folder in the
templates foider. Save this file as login. .

The tag {¥ csrf_token X} helps prevent a common type of
attack with forms. The {{ form.as_p }} element displays the
defaull fogin form in paragraph formal. The <input> efement
named next redirects the user to the home page after a successful
login.

{%¥ extends "learning_logs/base.html™ %}

{%¥ block content %}
{% if form.errors X}
<p>
Your username and password didn't match.
Please try again.
</p>
{% endif %}

<form method="post™
action="{¥ url ‘users:login’' ¥}">
{% csrf token %}

{{ form.as_p }}
<button name="submit">log in</button>

<input type="hidden” name="next"
value="(% url 'learning_logs:index" %}"/>
</form>

{% endblock content %}

User accounts {cont.)

User accounts (cont.)

Showing the current login status

You can modify the base.htmi template to show whether the user is
currently logged in, and to provide a link to the login and logout
pages. Django makes a user object availabie to every lemplalte,
and this template takes advantage of this object.

The user.is_authenticated (ag allows you lo serve specific
content to usevs depending on whether they have logged in or not.
The {{ user.username }} properly allows you to greet users
who have logged in. Users who haven! logged in see links to
rogister or fog in.
<p>

Learning Log

{% 1f user.is_authenticated %}
Hello, {{ user.username }}.

log out

{% else X%}

register
 -

log in

{%X endif %}
</p>

{%¥ block content %}{X endblock content %}

The logout view

The logout_view() function uses Dfango’s logout() function
and then redirects the user back fo the home page. Since there is
no logout page, there is no logout template, Make sure to write this
code in the views._py file that's stored in the users app folder.

from django.http import HttpResponseRedirect
from django.core.urlresolvers import reverse
from django.contrib.auth import logout

def logout_view(request):
"""Log the user out."""
logout(request)
return HttpResponseRedirect(
reverse('learning_logs:index'))

PYTHON
CRASH COURSE

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

User accounts (cont.)

The register view

The register view needs (o display a blank registration form when
the page is first requested, and then process completed
registration forms. A successiul registration logs the user in and
redirects fo the home page.

from django.contrib.auth import login

from django.contrib,auth import authenticate

from django.contrib,auth.forms import \
UserCreationForm

def register(request):
"""Register a new user.
if request.method |= 'POST':
Show blank registration form.
form = UserCreationform()
else:
Process completed form.
form = UserCreationForm(
data=request.POST)

e

if form.is_valid():

new_user = form.save()

Log in, redirect to home page.

pw = request.POST[‘passwordl’]

authenticated_user = authenticate(
username=new_user.username,
password=pw

)

login(request, authenticated_user)

return HttpResponseRedirect(
reverse('learning_logs:index'))

context = {'form': faorm}
return render(request,
‘users/register.html’, context)

Styling your project

The diango-boolstrap3 app aflows you fo use the Bootstrap
library to make your pn ook visually appealing. The
app provides tags th can use in your lampiates (o
style individual elemenis on a page. Learn more at
http.//dfango-boolsirap3. readthedocs.io

Deploying your project

Heroku lets you push your project o a live server, making it

available to anyone with an internet connection. Haroku
offers a free service level, which lets you learn the
deployment process without any commitment. You'll ne

1o install a set of heroku ool wd use git (o track the state
of your project. See hiip.//deveenter. heroku.com/, and click
on the Python link

User accounts (cont.)

The register template
The register template displays the registration form in paragraph

{% extends 'learning_logs/base.html' %}
{% block content %)}

<form method='post’
action="{% url 'users:register' %}">

{% csrf_token %}
{{ form.as_p }}

<button name='submit’>register</button>
<input type="hidden' name='next’'
value="{% url 'learning_logs:index' %}"/>
</form>

{% endblock content %}

Connectmg data to users

Making a topic belong to a user
Only the highest-tevel data in a hierarchy needs to be directly
connected to a user. To do this import the User model. and add it
as a foreign key on the data modei.

After modifying the model youll need to migrate the database.
Youll need to choase a user 1D to connect each existing instance
fo.

from django.db import models
from django.contrib.auth,models import User

class Topic(models.Model):
“"*A topic the user is learning about."""
text = models.CharField(max_length=200)
date_added = models.DateTimeField(
auto_now_adds=True)
owner = models,ForeignKey(User)
def __str_ (self):
return self.text

Querying data for the current user

in a view, the request object has a user attribute. You can use this
aftribute to query for the user’s data, The filter() function then
pulls the data that belongs to the cumrent user,

topics « Topic.objects,.filter(
owner=request.user)

Connecting data to users (cont.)

Restricting access to logged-in users

Some pages are only relevant to registered users, The views for
these pages can be protected by the @login_required decorator.
Any view with this decorator will automatically redirect non-logged
in users to an appropriate page. Here's an example views.py file.

from django.contrib.auth.decorators import /
login_required
~-snip--

@login_required
def topic(request, topic_id):
"““Show a topic and all its entries.™"™™

Setting the redirect URL

The @login_required decorator sends unauthorized users to the
login page. Add the following line fo your project’s setlings.py file
50 Django will know how to find your login page.

LOGIN_URL = '/users/login/'

Preventing inadvertent access

Some pages serve data based on a parameler in the URL. You
can check that the current user owns the requested data, and
returm & 404 emor if they don't. Here's an example view.

from django.http import Httpde4q

--snip--
def topic(request, topic_id):
"""Show a topic and all its entries.
topic = Topics.objects.get(id=topic_id)
if topic.owner != request.user:
raise Http4odq
-=snip--

Using a form to edit data
If you provide some initial data, Django generates a form

with the user's existing data. Users can then modify and
save their data

Creating a form with initial data
The instance parameter allows you (o specify initial data for a form.

form =

EntryForm(instance=entry)

Modifying data before saving

The argument commit=False alfows you to make changes before

writing data to the dafabase.
new_topic = form.save(commit=False)
new_topic.owner = request.user
new_topic.save()

More cheat sheets available at
ehmatthes.github.lo/pcc/

